
MA 335, Spring 2012

Assignment 7.

This homework is due Thursday March 8.

There are total 42 points in this assignment. 38 points is considered 100%. If
you go over 38 points, you will get over 100% for this homework and it will count
towards your course grade.

Collaboration is welcome. If you do collaborate, make sure to write/type your
own paper and give credit to your collaborators in your pledge. Your solutions
should contain full proofs. Bare answers will not earn you much.

(1) (a) [2pt] Show that the sets {d; d > 0 and d divides n} and
{n
d ; d > 0 and d divides n} are equal. Deduce that∑

d|n

d =
∑
d|n

n

d
and

∏
d|n

d =
∏
d|n

n

d
.

(If you see
∏

notation for the first time, it’s like
∑

notation, only for

product. For example,
4∏

i=1

= 1 · 2 · 3 · 4.)

(b) [3pt] Prove that ∏
d|n

d = nτ(n)/2.

(Hint: Write
∏
d|n

d ·
∏
d|n

d =
∏
d|n

d ·
∏
d|n

n
d .)

Comment. It would seem that we may get an irrational number after we
take a root on the right hand side. However, it cannot happen because the
left hand side is always integer. Problem 5a gives another, more immediate
explanation why the right hand side cannot be non-integer.

(2) [3pt] (6.1.1) Let m, n be positive integers and p1, . . . , pr be the distinct
primes that divide at least one of m or n. Then m and n may be written
as

n = pk1
1 pk2

2 · · · pkr
r , ki ≥ 0,

m = pj11 pj22 · · · pjrr , ji ≥ 0.

Prove that

gcd(m,n) = pu1
1 pu2

2 · · · pur
r , lcm(m,n) = pv1

1 pv2
2 · · · pvr

r ,

where ui = min{ki, ji} and vi = max{ki, ji}. (lcm(a, b, . . . , c) is the least
common multiple of numbers a, b, . . . , c, i.e. the least positive integer that
is a multiple of each of numbers a, b, . . . , c.)

(3) (a) [2pt] (6.1.3) Deduce from Problem 2 that gcd(m,n) · lcm(m,n) = mn
for all positive integers m,n.

(b) [2pt] Is it true that gcd(m,n, k) · lcm(m,n, k) = mnk for all positive
integers m,n, k?

— see next page —
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(4) [3pt] (6.1.6) For any integer n ≥ 1, establish that τ(n) ≤ 2
√
n. (Hint: In

each pair s.t. d1d2 = n, at least one of numbers ≤
√
n.)

(5) (6.1.7) Prove the following.
(a) [3pt] τ(n) is an odd integer if and only if n is a perfect square.
(b) [3pt] σ(n) is an odd integer if and only if n is of the form m2 or 2m2.

(Hint: If p is an odd prime, then 1 + p+ . . .+ pk is odd if and only if
k is even.)

(6) (6.1.14) For k ≥ 2, show each of the following:
(a) [2pt] n = 2k−1 satisfies the equation σ(n) = 2n− 1.
(b) [2pt] If 2k − 1 is prime, then n = 2k−1(2k − 1) satisfies the equation

σ(n) = 2n.
(c) [2pt] If 2k − 3 is prime, then n = 2k−1(2k − 3) satisfies the equation

σ(n) = 2n+ 2.
Comment. It is an open question if there are any positive integers such
that σ(n) = 2n+ 1.

(7) [4pt] Numbers with the property σ(n) = 2n are called perfect numbers.
In other words, perfect numbers are those equal to sum of their divisors,
excluding the number itself. For example, 28 = 1 + 2 + 4 + 7 + 14. In
problem 6b we proved that numbers of the form n = 2k−1(2k − 1), with
2k−1 prime, are perfect. Prove the partial converse: if a perfect number is
even, then n has the form n = 2k−1(2k − 1), where 2k − 1 is prime. (Hint:
Represent n as 2k ·m, where m is odd. Use multiplicativity of σ.)

Comment. The statement above says nothing about odd perfect num-
bers, and there is a good reason: it is an open question whether they exist.

(8) (∼6.1.22) τ and σ are particular cases of a family of number theoretic
functions σs, s ∈ R:

σs(n) =
∑
d|n

ds,

so τ = σ0 and σ = σ1.
(a) [3pt] (6.1.8) Prove that σ−1 = σ(n)/n. (Hint: Multiply both sides by

n.)
(b) [2pt] (6.1.17) Show that for every fixed s ∈ R, function ns is multi-

plicative.
(c) [3pt] Prove that σs is a multiplicative function for every s ∈ R. (Hint:

Use item 8b.)

(d) [3pt] If n = pk1
1 pk2

2 · · · pk4
r is the prime factorization of n, then

σs(n) =

(
p
s(k1+1)
1 − 1

ps1 − 1

)(
p
s(k2+1)
2 − 1

ps2 − 1

)
· · ·

(
p
s(kr+1)
r − 1

psr − 1

)
.

(Hint: Compute σs(n) in the case n = pk. Then use multiplicativity.)


